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Abstract The calculation of the minimum distance between surfaces plays an important
role in computational mechanics, namely, in the study of constrained multibody systems
where contact forces take part. In this paper, a general rigid contact detection methodology
for non-conformal bodies, described by ellipsoidal and superellipsoidal surfaces, is pre-
sented. The mathematical framework relies on simple algebraic and differential geometry,
vector calculus, and on the C2 continuous implicit representations of the surfaces. The pro-
posed methodology establishes a set of collinear and orthogonal constraints between vectors
defining the contacting surfaces that, allied with loci constraints, which are specific to the
type of surface being used, formulate the contact problem. This set of non-linear equations
is solved numerically with the Newton–Raphson method with Jacobian matrices calculated
analytically. The method outputs the coordinates of the pair of points with common normal
vector directions and, consequently, the minimum distance between both surfaces. Contrary
to other contact detection methodologies, the proposed mathematical framework does not
rely on polygonal-based geometries neither on complex non-linear optimization formula-
tions. Furthermore, the methodology is extendable to other surfaces that are (strictly) con-
vex, interact in a non-conformal fashion, present an implicit representation, and that are at
least C2 continuous. Two distinct methods for calculating the tangent and binormal vectors
to the implicit surfaces are introduced: (i) a method based on the Householder reflection
matrix; and (ii) a method based on a square plate rotation mechanism. The first provides a
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base of three orthogonal vectors, in which one of them is collinear to the surface normal.
For the latter, it is shown that, by means of an analogy to the referred mechanism, at least
two non-collinear vectors to the normal vector can be determined. Complementarily, several
mathematical and computational aspects, regarding the rigid contact detection methodol-
ogy, are described. The proposed methodology is applied to several case tests involving the
contact between different (super) ellipsoidal contact pairs. Numerical results show that the
implemented methodology is highly efficient and accurate for ellipsoids and superellipsoids.

Keywords Minimum distance calculation · Rigid contact detection · Common normal
concept · Superquadric surfaces · Householder transformation · Newton–Raphson method

1 Introduction

Contact is an omnipresent phenomenon in any mechanical system. Physically, it can be
defined as the spatial configuration of two bodies on sharing a common geometric locus in
which reactive forces are generated to oppose body intersection due to local deformation of
the contacting surfaces and energy is dissipated, usually, in the form of heat.

In the scope of multibody dynamics [1], to accurately design and simulate a mechanism
that is either interacting with the surrounding environment or devising relative joint motion
among the articulated bodies that compose it, contact forces must be utterly considered.
Rigid contact analysis incorporates a computational methodology that aims to simulating
the behavior of a constrained mechanical system induced by reactive forces produced at
communicating bodies. Rigid contact analysis focuses on the resolution of four fundamen-
tal issues: (i) definition of a representative geometric description of the contacting surfaces,
(ii) minimum distance calculation between potential contacting surfaces, (iii) contact de-
tection, and (iv) establishment of a constitutive force model that depends on the bodies’
material properties, pseudo-penetration depth, and associated rate change.

One of the main requirements to model the geometry of a 3-D object, in this case the
outer surface of a rigid body, is the usage of a mathematical description that provides a
high geometric representativity, affiliated to a compact, controllable, and intuitive set of
parameters. Quadric or superquadric surfaces [2] are geometric entities that provide such
a description for a variety of shapes, both natural and manmade. For mechanical systems
presenting freeform shapes, superquadrics surfaces can also be applied by finding their best
fit to the set of points that belong to the generalized surface [3, 4]. This strategy is suitable
to handle contact problems in which the contacting surfaces either have geometries close to
a superquadratic surface or the surface vicinity of each contact point does not depart from a
superquadric form.

The most mathematically demanding rigid contact issue concerns the minimum distance
calculation. Given a non-conformal (or convex) surface representation of the colliding bod-
ies, together with their positions and spatial orientations, the resolution of the minimum
distance problem is purely geometric. The unknown variables of such problem are the spa-
tial coordinates of the potential contacting pair of points that present collinear normal vec-
tors. Hence, contact between two surfaces can be established by the resolution of a set of
non-linear equations that expresses collinear and orthogonal constraints between the vectors
defining the contacting surfaces at the contact points, namely, the normal, tangent, binormal
and distance vectors [1, 5–7]. Another type of equation that is important for the geometric
accuracy of contact analysis is hereafter referred as the locus (or isosurface) constraint (iso-
line constraint in the 2-D space). The solution of the locus constraint is the set of points that
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satisfy a geometric property usually described by an implicit surface function. As an exam-
ple, the locus constraint of a sphere is the location of all the points equally distanced from its
center point. Thus, for non-conformal rigid contact analysis, the calculation of the minimum
distance between convex bodies requires that the surface associated with each rigid body to
be described with a mathematically well-defined continuous and differentiable geometric
representation, so that analytical expressions of the distance vector and the normal, tangen-
tial, and binormal surface vectors can be deduced. The surface representation can be either
implicit or explicit (parametric).

The intersection of rigid bodies, although physically impossible, can be considered as
a motif for the mathematical concept of contact: two surfaces (or lines in the 2-D case)
are in contact when their intersection is not a null set of points or, equivalently, when the
lowest value of the distance function magnitude (e.g., 2-norm) is lesser or equal to zero.
Rigid contact detection consists on determining if the referred bodies are sharing a common
geometric locus, thus three contact statuses are possible: (i) no contact, (ii) external contact
or contact at a single point, and (iii) contact with pseudo-penetration. From a mechanical
point of view, whenever contact occurs it is said that the rigid bodies overlap or present
a pseudo-penetration. Here, contact is detected when the minimum distance is lesser than
or equal to zero and positive when surfaces are apart. Note that, by convention, negative
distances imply surface overlap.

The magnitude of the contact reaction forces, which depends on the minimum distance
in a direct proportion [8], is calculated only when pseudo-penetration occurs. Within the
equations of motion, contact forces are seen as external forces that act upon interacting or
interlinked bodies. Different formalisms can be used to describe contact forces, including
penalty and linear complementarily contact formulations. A common model for penalty for-
mulations was proposed by Lankarani and Nikravesh [9], based on the Hertzian non-linear
elastic contact theorem [8] and on the Hunt and Crossley [10] continuous contact force
model, which accounts for energy dissipation. Other formalisms, such as the linear com-
plementarily problem [11], may also take advantage of the proposed geometric description
and contact detection framework presented here, as they also need to deal with geometric
modeling issues and minimum distance calculation for the evaluation of the contact forces.

Contact analysis has many important applications in other areas of applied sciences such
as molecule simulation in computational physics [12], modeling discontinuous mechanical
systems (discrete element method) in geomechanics [13], humanoid design in biomechanics
[14], virtual reality simulation and computer animation [15]. From such a variety of applica-
tions, several methods have been developed for distance computation and contact detection
based on quadric and superquadric surfaces.

Based on an interior point algorithm, Chakraborty et al. [16] formulated the distance
computation for convex bodies as an optimization problem to minimize the Euclidean dis-
tance subjected to the condition that potential contact points lie on the surfaces. Such method
presents global convergence properties that are robust even in the absence of any initial in-
formation about the closest points. The method is also quite accurate since the determined
points belong to the surface. Its main drawback is a lesser computational efficiency com-
pared to other methods [13, 14].

For discrete element modeling, Lin and Ng [13] applied contact detection algorithms for
ellipsoids based on the common normal vector concept, which states that two points are
the candidate contact pair of points if the normal directions at these points are collinear to
the intersecting line. As a result, a set of non-linear equations, obtained from equaling both
normal vectors and from equaling the normal vector to the distance vector, is solved numer-
ically. Two additional conditions of the points lying on the ellipsoids were also considered.



258 D.S. Lopes et al.

As major limitations, the method was tested only for ellipsoids and presents a system of
non-linear equations that, although derived from the prescribed common normal conditions,
is C1 continuous and fails when the points of contact are coincident. Such issues encourage
the consideration of other relationships that include surface vectors, such as tangents and
binormals in order to rewrite the set of equations in a more propitious form for numerical
resolution based on analytical Jacobian matrices [14].

For biomechanical applications, Kwak et al. [14] developed multibody models of di-
arthrodial joints, such as the knee. The models included articular contact of freeform sur-
faces with a parametric representation. Contact detection is also based on the common nor-
mal concept. Here, it is pointed out that the computational efficiency of their contact model
is enhanced by the use of analytical Jacobians.

Wang et al. [17] presented a proximity query expressed as an algebraic condition for real-
time continuous contact detection for ellipsoids moving under rigid body transformations.
The algebraic condition is a quartic polynomial equation, also named as separation condition
or characteristic equation, which relates the geometric parameters of shape, spatial orienta-
tion, and position of two ellipsoids. Depending on the sign of all four roots, it is possible to
determine the contact status. The resolution of the characteristic equation is straightforward,
leading to a simple and yet efficient algorithm for contact detection of ellipsoidal bodies that
computes the exact time interval of contact [18].

In this paper, a general non-conformal contact detection methodology for rigid bodies,
described by ellipsoids and superellipsoids, is presented. The mathematical framework pre-
sented hereafter relies on vector calculus, algebraic and differential geometry. The proposed
contact detection methodology establishes a set of geometric constraints that, once fulfilled,
render the pair of points of possible contact. The resulting methodology consists in a set
of non-linear equations that is solved numerically with the Newton–Raphson method for
which the Jacobian matrices are calculated analytically, without resorting to optimization al-
gorithms or polygonal-based geometries. This way, contact detection comes naturally from
the minimum distance calculation. Furthermore, the methodology is extendable to other
surfaces that present the following characteristics: (i) are (strictly) convex, (ii) interact in a
non-conformal fashion, (iii) possess an implicit representation, and (iv) and are at least C2

continuous. For the sake of simplicity, the proposed methodology is here applied only to el-
lipsoids and superellipsoids since these surfaces present appealing geometric properties for
solution existence and uniqueness. The theoretical formulations of the geometric descrip-
tion and the computational implementation aspects of contact detection are described in the
following sections and proper examples are provided and discussed.

2 Contact detection methodology and multibody dynamics

Detecting when and where contact occurs is of paramount importance to describe the com-
plete dynamic response of a multibody system. The proposed contact detection methodology
involves modeling the geometry of the contacting surfaces, computation of the minimum
distance between surfaces and, consequently, contact detection between bodies. Within the
multibody dynamics formulation, the second-order ordinary differential equations that de-
scribe the motion of a constrained mechanical system are given by [1]:

{
Mq̈ + �T

q λ = g
�qq̈ = γ ,

(1)
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where M is the global mass matrix, q̈ is the acceleration vector, �q is the Jacobian matrix of
the kinematic constraints, λ is the vector of Lagrangian multipliers, γ is the right-hand side
vector of the acceleration equation, and g is the generalized external force vector. Spatial
data, describing the position and orientation of the rigid bodies of the system, is contained
within vector q, the vector of generalized coordinates.

Contact forces are included in the g vector that contains all the external forces applied
to the system including centrifugal and Coriolis forces. The relative position and orientation
of the bodies, due to the application of these and other external forces, are obtained by
integrating, in time, the equations of motion given by (1) in a forward dynamics perspective
as an initial value problem using the direct integration procedure [1].

Contact detection methodologies heavily rely on the evaluation of a set of geometric con-
straints that expresses the common normal concept [7, 13, 19]. Restriction on body move-
ment by such constraints is imposed by the application of a pair of reactive forces that
appear when surfaces overlap and not by the conditioning of a degree of freedom within the
mechanical system.

For every integration time step, rigid contact detection is evaluated by testing if the bod-
ies are apart with proximity queries [16, 18] or when these fail, by determining the minimum
Euclidean distance between the surfaces. When two moving surfaces overlap, a pair of op-
posite contact forces appear, each one applied on the contact points of the intervening bodies
and with the direction of the minimum distance vector. The reaction force magnitude is pro-
portional to the pseudo-penetration. Although the contact detection methodology regards
bodies as being rigid, the pseudo-penetration is an estimate of the deformation that results
from the surface overlap. This way, not only contact forces can be predicted but also contact
areas and contact stresses can be estimated [14].

In Fig. 1, a generalized multibody model of a contact pair of bodies is presented. Each
rigid body is defined with at least three points using a multibody formulation with natural
coordinates [20] and can contain more than one contact surface. The coordinate systems
employed to describe the motion and configuration of a rigid contact pair are: the global co-
ordinate system XYZ, the fixed coordinate systems ξkηkζk of rigid bodies k, k ∈ {α,β}, and
the local coordinate systems xmymzm of surfaces m, m ∈ {i, j}. Position vectors and rotation
matrices, obtained from the multibody dynamics calculations are represented, respectively,
by r and A where the subscripts indicate the corresponding coordinates systems, e.g., AOβ

represents the coordinate transformation from the fixed coordinate system of body β to the
global coordinate system. Position vectors in the local reference system of the contacting
surface are denoted by s. Each body has a fixed coordinate system that must not be con-
fused with the local coordinate systems of the surfaces that compose it. Note that, all vector
relationships that define the geometric constraints are referenced to the global coordinate
system, and since the methodology is designed for non-conformal contact, i.e., interacting
surfaces have dissimilar profiles; contact calculation is performed using the outward surface
normals.

3 Mathematical formulation for minimum distance calculation and contact detection

The minimum distance calculation between two rigid, non-conformal, and (strictly) con-
vex surfaces can be formulated as a constraint optimization problem in which the objective
function is defined by the 2-norm distance between surface points and where the constraints
are derived from the common normal concept [16, 21]. From non-linear optimization, it is
well known that the minimum distance calculation is a problem for which the existence of
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a minimizing solution is proven by Weierstrass’ theorem and whose unicity of solution is
proven by second-order optimality conditions [22]. The minimum distance calculation prob-
lem is also well-posed for the surface types under consideration since the solution depends
continuously on the data.

Rather than dealing with complex and time consuming optimization schemes [16, 21,
23, 24], the constraint optimization problem can be transformed into a system of non-linear
equations [23] where the minimum distance problem is written solely as the set of the geo-
metric constraints that express the common normal conditions, thus no non-linear objective
function is required. With the problem written as a system of non-linear equations, it is pos-
sible to explore the potential of the Newton–Raphson’s method efficiency since it presents
a quadratic convergence behavior; an important feature when regarding real-time contact
detection. But in order to implement an efficient Newton–Raphson method it is necessary
to surpass the method’s major numerical restrictions [23, 25]: (i) the analytical Jacobian
matrix is needed, therefore, analytical derivatives must be available [14], (ii) function eval-
uation must be inexpensive, and (iii) since it is a local convergence method the success of
the algorithm deeply depends on the initial approximation.

The following sub-sections present a formulation of the minimum distance calculation
problem, expressed as a system of non-linear equations, which is generic to C2 continuous
implicit surfaces along with a contact detection formulation that is particularized to radially
symmetric, convex, and closed surfaces, such as (super)ellipsoids.

3.1 Problem statement

Consider two non-deformable bodies, α and β , whose global positions and orientations are
given. Rigidly coupled to each body are two non-conformal C2 continuous surfaces i and
j that bear implicit and/or parametric representations. The minimum distance problem con-
sists of determining the surface points that share a common normal and where the distance
between surfaces is minimal. The common normal concept states the necessary conditions
for that two points form a contact pair: the normal vectors at these points must be collinear
relatively to each other and collinear with the distance vector that connects the two points
(Fig. 1). From this enunciation, it can be inferred that the mathematical formulation for
contact is intimately related to the surface representation. Implicit and parametric surface
representations are written in a general form as:

Fi (xi, yi, zi) = 0,

Fj (xj , yj , zj ) = 0, (2)

and

pi = pi (s, u),

pj = pj (w, v), (3)

where Fi and Fj are implicit scalar functions that define the locus of points belonging to
surfaces i and j , respectively, pi and pj are the parametric position vectors of the referred
surfaces, (x, y, z) the Cartesian coordinates of a surface point and (s, u) and (w,v) their
respective parametric coordinates. The distance vector, dPQ, that connects the two minimum
distance surface points, P and Q, is defined as the difference between the position vectors
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Fig. 1 Multibody model of a contact pair and vector entities involved in contact analysis along with the
coordinates systems (global, rigid body, and surface reference frames). The detail shows the intervening
vector quantities of proposed contact detection formulation

of points P and Q, given by rOP and rOQ, as represented in Fig. 1. Thus, the distance vector
is written as

dPQ = rOQ − rOP. (4)

It should be noted that rOP and rOQ are unknown quantities, i.e., the coordinates of these
points are the aim of minimum distance calculations. The normal vector at each point, nOP

and nOQ, is derived by partial differentiation of the surface equation in order to the spatial
coordinates. If the implicit surface representation, given in (2), is considered then the normal
vector at a given point is the surface gradient evaluated at that point. The tangent and binor-
mal vectors at each point, tOP, tOQ, bOP, and bOQ, are contained within the plane defined
by the respective normal vectors and candidate points. In the case of parametric surfaces,
defined according to (3), the differentiation of the surface expression gives the tangential
vectors along each spatial parameter and, in this case, the surface normals are calculated
by the cross product of the tangent vectors. For implicit surfaces, the tangent and binormal
vectors must be obtained in a more contriving manner as it will be seen later in Sect. 3.4.

3.2 Geometric constraints

In this work, rigid contact detection is formulated as a set of geometric constraints that
are used to describe the referred common normal concept. These constrained equations are
written as a vector �G that depends on the vector of the unknown points coordinates, qG,

�G = �G
(
qG

)
, (5)
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where the superscript ‘G’ is used to classify the geometric constraint equations within the
multibody formulation.

In general, three types of non-linear equations are used to define a set of geometric con-
straints for minimum distance calculation: (i) orthogonal constraint (relative constraint be-
tween two perpendicular vectors), (ii) collinear constraint (relative constraint between two
parallel vectors), and (iii) locus or isosurface constraint (assures that a point in space lies
on a contact surface). It should be noticed that the latter type of constraint is only intro-
duced for contact detection regarding implicit surfaces. Moreover, for convenience of the
methodology, vector qG is expressed with respect to the local reference frame attached to
the intervening surfaces, as it will be described in the next section.

As it was mentioned previously, minimum distance calculation between surfaces is stated
as the geometric problem consisting of encountering the location of the pair of points P and
Q in which the distance vector, dPQ, is aligned to the surface normals nOP and nOQ, and has
a minimum 2-norm value. The collinearity condition between these vectors can be written
as two cross product equations relating vectors dPQ, nOP, and nOQ. Equivalently, this can
also be expressed as an orthogonal constraint involving vector dPQ, surface tangent vectors
tOP and tOQ, and binormal vectors bOP andbOQ. Equation (6)a presents this equivalency:

dPQ × nOP = 0 ⇔
{

dPQ · tOP = 0
dPQ · bOP = 0

dPQ × nOQ = 0 ⇔
{

dPQ · tOQ = 0
dPQ · bOQ = 0.

(6a)

Another collinearity condition that is verified at the minimum distance points is:

nOP × nOQ = 0 ⇔
{

nOP · tOQ = 0
nOP · bOQ = 0

nOQ × nOP = 0 ⇔
{

nOQ · tOP = 0
nOQ · bOP = 0.

(6b)

Such a condition (6b) is equivalent to the orthogonality constraints between the normal
vector of one of the surfaces relatively to the tangent and binormal vectors of the paired
surface. Equations (2), (6a), and (6b) utterly define the common normal concept.

In 3-D space, whether one considers the collinear or orthogonal constraint definition, (6a)
and (6b) always render a system of four non-linear independent equations. In the case of the
parametric surface representation, (6a) and (6b) can be solved for the 4 unknown surface
parameters (s, u,w,v). Alternatively, when the surface representation follows an implicit
definition, 2 additional locus constraints, given by (2), must be added, one for each rigid
surface, to the set of orthogonal constraints, providing the 4 + 2 equations necessary for
solving the 6 Cartesian coordinates (xi, yi, zi) and (xj , yj , zj ) of the two potential contact
points. Redundant constraints must be avoided so that all the equations are linearly indepen-
dent. The geometric constraint equations (2), (6a), (6b) serve to restrict the solution space
of �G to the solution with most physical meaning for contact.

3.3 Vector of geometric constraints and analytical Jacobian matrix

When dealing with C2 surfaces, such as (super)ellipsoidal surfaces, the vector of geometric
constraints �G is built with C2 continuous functions and the dot and cross product operators
do not introduce any discontinuity in the domain, therefore, �G is a twice-differentiable
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vector function. The system of non-linear equations that contains these non-redundant geo-
metric constraints,

�G
(
qG

) = 0, (7)

can then be solved using the Newton–Raphson iterative procedure. Since �G has at least a
C2 mathematical expression, one can exploit the numerical behavior with analytical Jaco-
bians. Hence,

qG
k+1 = qG

k − (
�G

qG

(
qG

k

))−1
�G

(
qG

k

)
, (8)

where �G
q is the Jacobian matrix of the geometric constraints and k the Newton–Raphson

iterator index. The Newton–Raphson scheme iterates until the difference between qG
k+1 and

qG
k is lesser than a user specified tolerance. A rapid convergence is usually obtained consid-

ering good initial guesses for qG
0 .

There is more than one way to formulate distance computation via systems of geomet-
ric constraint equations (2), (6a), (6b) as the formulation deeply depends on the analytical
behavior of the functions at stake and on the surface representation type, e.g., when con-
sidering parametric surfaces loci constraints are obviously not relevant and only orthogonal
or collinear constraints are of interest. In this work, mathematical modeling for contact de-
tection exploits geometric properties associated with the implicit surface representation of
(super)ellipsoids in order to define the mathematical entities (e.g., vectors and surface func-
tions) that participate in the geometric constraint equations. Additionally, other geometric
properties, such as the radial symmetry, are useful to guarantee unicity of the minimum
distance problem as described in Sect. 3.5.

From the set of geometric conditions that are verified at the points of minimum distance
(2), (6a), (6b), i.e., 4 collinear constraints, 8 orthogonal constraints, and 2 loci constraints, it
is necessary to elect 6 equations, two of them are obligatorily the locus constraints of each
implicit surface and the remaining 4 are selected such that no linear dependent equations are
inserted in vector �G.

For 3-D (strictly) convex and closed objects represented implicitly (Fig. 1), the above-
mentioned geometric constraints of orthogonality and isosurface are grouped in a 6 × 1
vector �(G,6) which can be written in the homogeneous form as

�(G,6)
(
qG

) = 0 ⇔

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

nT
OP · tOQ

nT
OP · bOQ

dT
PQ · tOQ

dT
PQ · bOQ

Fi

Fj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

, (9)

where

qG = [xi, yi, zi, xj , yj , zj ]T = [
sT
iP sT

jQ

]T
(10)

is the vector that contains the coordinates of the potential contact pair of points expressed in
the local reference frame associated with the implicit surface representation.

The last two geometric constraints in (9) are the implicit surface equations given in the
canonical form, i.e., the surface principal axes are aligned with the local coordinate axes and
the surface centroid is coincident with the local origin, as represented in the two ellipsoidal
surfaces depicted in Fig. 1.
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All vectors in (9) are defined in the global coordinate system. However, since qG holds
the coordinates of the possible contact pair of points in the local coordinate system of the
intervening surfaces, proper coordinate transformations need to be introduced to express
these vectors as a function of qG. Resorting to Fig. 1, the following expressions are used to
calculate the global coordinates of vectors dPQ, nOP, tOQ, and bOQ:

nOP = AOαAαiniP,

tOQ = AOβAβj tjQ,

bOQ = AOβAβj bjQ,

dPQ = rOQ − rOP

= rOβ + AOβrβj + AOβAβj sjQ − (rOα + AOαrαi + AOαAαisiP), (11)

where niP, tjQ, and bjQ are the local coordinates of these vectors expressed in the surface
reference frame, AOα , AOβ , Aαi , and Aβj are the rotation matrices, rOα , rOβ , rαi , and rβj

are the origin positions of the rigid body and surface reference frames, and siP and sjQ are
the local position vectors of points P and Q as referred in Sect. 2.

The Newton–Raphson method relies on the Taylor series 1st order expansion of �(G,6).
This demands the calculation of the 6 × 6 Jacobian matrix of the geometric constraints. By
definition, each row of the Jacobian matrix is the first partial derivative of �(G,6) in order
to qG. Hence,

�G

qG

(
qG

) = ∂

∂qG
�(G,6)

(
qG

) ⇔ �G

qG

(
qG

) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

tTOQ(nOP)qG + nT
OP(tOQ)qG

bT
OQ(nOP)qG + nT

OP(bOQ)qG

tTOQ(dPQ)qG + dT
PQ(tOQ)qG

bT
OQ(dPQ)qG + dT

PQ(bOQ)qG

nT
iP 01×3

01×3 nT
jQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

where considering (11),

(nOP)qG = AOαAαi(niP)qG,

(tOQ)qG = AOβAβj (tjQ)qG,

(bOQ)qG = AOβAβj (bjQ)qG,

(dPQ)qG = AOβAβj (sjQ)qG − AOαAαi(siP)qG, (13)

are 3 × 6 matrices and

(siP)qG =
⎡
⎣1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ = [I |0],

(sjQ)qG =
⎡
⎣0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ = [0 | I]. (14)

The equations presented in this section are generic to any implicit surface that is C2 con-
tinuous, and once equations (9) and (12) are implemented, extending the methodology to
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other surfaces requires the deduction of the analytical expressions for niP, tjQ, bjQ, (niP)qG ,
(tjQ)qG , and (bjQ)qG which is usually a straightforward process considering the analytical
nature of the surfaces definitions. Despite the generic nature of the method, the geometric
constraints presented here are only necessary conditions for contact detection, although in
some cases, such as two non-aligned ellipsoids, the conditions reveal to be sufficient. There-
fore, extending the formulation to other implicit surfaces entails additional considerations
that must guarantee the existence and unicity of the minimum distance solution. For ex-
ample, in the case of open surfaces, such as the paraboloid, the boundaries are required to
be limited, and the geometric equations that define the boundaries must enter the vector of
geometric constraints in order to evaluate if the potential contact points are contained within
the surface boundaries.

3.4 Tangent and binormal vectors given an arbitrary normal vector

When dealing with Cn, n ≥ 1, implicit surfaces, it is relatively easy to obtain the normal
vector at any point on the surface. The gradient is a differential operator that once applied to
the analytical surface expression (2) defines the normal vector at each point. However, the
tangent and binormal vectors are not calculated just as simply. Although it seems intuitive,
finding orthogonal vectors given an arbitrary non-null vector in 3-D Cartesian space is not
a trivial task. Here, two different approaches for calculating an orthogonal vector basis that
belongs to the tangent plane defined by the gradient normal vector are considered: (i) by
determining an appropriate Householder reflection matrix, and (ii) by the cross product of
the normal vector with an auxiliary non-collinear vector. Both approaches lead to analytical
expressions for the tangent and binormal vectors which depend on the coordinates of the
normal vector and, consequently, on the local surface point coordinates.

The Householder transformation [26] is expressed as a matrix H which reflects a vector,
in this case the normal vector n, along a vector axis h:

H = I − 2
hhT

hT h
=

⎡
⎢⎢⎣

1 − 2
h2

1
h2 −2 h1h2

h2 −2 h1h3
h2

−2 h1h2
h2 1 − 2

h2
2

h2 −2 h2h3
h2

−2 h1h3
h2 −2 h2h3

h2 1 − 2
h2

3
h2

⎤
⎥⎥⎦ , (15)

where

h ≡ h(n) = [
h1 h2 h3

T
] = [

nx + ‖n‖2 ny nz

]T
, (16)

and

h = ‖h‖2. (17)

Matrix H is symmetric and orthogonal with columns (or rows) forming an orthogonal vector
basis. The first column of H is collinear to n and the remaining columns are perpendicular
to n. Here, t ≡ t(n) and b ≡ b(n) are assigned as the second and third columns, respectively.
Toward the methodology, (15) acts merely as a formula to calculate the tangent and binormal
vectors at a given surface point.

Inspired by the motion of a simple rotation mechanism (Fig. 2), an alternative way to
determine tangent and binormal vectors is to define a set of four vectors in which at least
two of them are non-collinear to an arbitrary vector n (Fig. 3):

v1 =
⎡
⎣

nx + ‖n‖2

ny + ‖n‖2

nz

⎤
⎦ , v2 =

⎡
⎣

nx − ‖n‖2

ny + ‖n‖2

nz

⎤
⎦ ,
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Fig. 2 Square plate rotation
mechanism. The revolute joints
rotate at the same angular
velocity but in opposite senses

Fig. 3 “Proof by picture” of the existence of non-collinear vectors given an arbitrary vector nxy in the 2-D
plane

v3 =
⎡
⎣

⎛
⎝

nx − ‖n‖2

ny − ‖n‖2

nz

⎞
⎠

⎤
⎦ , v4 =

⎡
⎣

nx + ‖n‖2

ny − ‖n‖2

nz

⎤
⎦ . (18)

In general, all four vectors in (18) are not collinear to n, except when nx = ny or nx =
−ny , in which case, only two non-collinear vectors are available (see rightmost graph of
Fig. 3). Since only one non-collinear vector is required to obtain the tangent and binormal,
the selection of the non-collinear vector is here undertook as listed in Table 1.

Despite the fact that the proof is referred to the 2-D plane, i.e., nz = 0 (Fig. 3), the proof
is clearly valid for any 3-D vector as nz can take real values different from zero, nz �= 0.

Applying the cross product operator between the normal and the elected non-collinear
vector vl , l ∈ {1,2,3,4}, the tangent and binormal vectors can then be calculated with (19)

t ≡ t(n) = n × vl

b ≡ b(n) = n × t = n × (n × vl ).
(19)

According to the formalism of (13), the Jacobian matrices are expressed as:

(tOQ)qG = AOβAβj

[
ñjQ(vjQ)qG + ṽjQ(njQ)qG

]
,

(bOQ)qG = AOβAβj

[
ñjQñjQ(vjQ)qG − ñjQṽjQ(njQ)qG (20)

− (ñjQṽjQ − ṽjQñjQ)(njQ)qG

]
,



A mathematical framework for rigid contact detection between quadric 267

Table 1 Selected pairs of non-collinear vectors according to the signs of the nx and ny coordinates

sign(nx) ∧ sign(ny) Selected non-collinear
vector

sign(nx) ∧ sign(ny) Selected non-collinear
vector

nx > 0 ∧ ny > 0 v2 or v4 nx < 0 ∧ ny > 0 v1 or v3

nx = 0 ∧ ny > 0 v2 or v4 nx = 0 ∧ ny > 0 v1 or v3

nx > 0 ∧ ny = 0 v2 or v4 nx < 0 ∧ ny = 0 v1 or v3

nx < 0 ∧ ny < 0 v2 or v4 nx > 0 ∧ ny < 0 v1 or v3

nx = 0 ∧ ny < 0 v2 or v4 nx = 0 ∧ ny < 0 v1 or v3

nx < 0 ∧ ny = 0 v2 or v4 nx > 0 ∧ ny = 0 v1 or v3

Table 2 Contact detection situations according to the minimum distance value

Contact type Minimum distance
d = sign(nOP · dPQ)‖dPQ‖2

Thumbnail

No contact d > 0

Contact at a single point d = 0

Contact with pseudo-penetration d < 0

where the tilde sign (∼) above the vector notation is the skew-symmetric matrix associated
with the corresponding vector.

3.5 Contact detection

The distance vector magnitude, d , is calculated as the signed Euclidean distance of vector
dPQ, thus ‘negative distances’ are considered. At a given time instant, the signed magnitude d

indicates one of the three possible contact situations as summarized in Table 2: (i) no contact,
(ii) contact at a single point or external contact (rOP = rOQ), and (iii) contact with pseudo-
penetration. Therefore, by computing the minimum distance between rigid surfaces it is
possible to detect the contact state.

Note that the formulated vector of geometric constraints, �G (9), reckons only the com-
mon normal concept meaning that for some contact pairs, it does not formulate the mini-
mum distance calculation per se. Consequently, multiple pairs of points with common nor-
mals that are collinear with the distance vector may appear. In the case of (super)ellipsoids
(Fig. 4), 2 or 4 multiple solutions of �G may result if one of the following situations oc-
curs: (i) whenever spheres take part of the contact pair (2 or 4 solutions), (ii) whenever
both surfaces are aligned, i.e., when two of the surface’s planes of symmetry are coincident
(4 solutions).

In order to guarantee the determination of the proper solution to the iterative proce-
dure, one must grant an approximated initial position that is close to the desired solution.
This is also a requirement for the convergence of the Newton–Raphson method. Even if the
numerical method does not converge to the minimum result, it is convenient to make use
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Fig. 4 Multiple solutions for the common normal concept. A1—Contact pair formed by a sphere and an
ellipsoid that are aligned with each other; A2—Multiple solutions of the corresponding vector of geometric
constraints �G; B1—Contact pair formed by a sphere and an ellipsoid that are not aligned with each other;
B2—Multiple solutions of the corresponding vector of geometric constraints �G

of the (super)ellipsoids geometric properties and intrinsic characteristics, such as convex-
ity, compactness (closed and bounded surface) and radial symmetry to ascertain the unique
minimum distance solution.

Thus, once the method converges, and after converting qG
kfinal

to global coordinates, it is
necessary to inquire if the obtained result,

q∗ =
[

q∗
1

q∗
2

]
, (21)

corresponds to the minimum distance solution. Given two arbitrary (super)ellipsoids in a
non-conformal contact situation, there are at most a total of four possible solutions of �G:

K =
{[(

q∗
1

q∗
2

)]
,

[
q∗

1

q∗
4

]
,

[
q∗

3

q∗
2

]
,

[
q∗

3

q∗
4

]}
with q∗

3 = −q∗
1 and q∗

4 = −q∗
2, (22)

where the points q∗
1 and q∗

3 belong to surface i and q∗
2 and q∗

4 belong to surface j . Hence,
the position vectors of the minimum distance points P and Q are such that

rOP ∈ {
q∗

1,q∗
3

}
and rOQ ∈ {

q∗
2,q∗

4

}
. (23)

By evaluating the Euclidean distance between all four combinations of the sub-vectors, q∗
1,

q∗
2, q∗

3, and q∗
4, the element of K that presents the minimum signed distance can then be
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determined:

min
m,n

f
(
nOP,q∗

m,q∗
n

)
, (24a)

with

f
(
nOP,q∗

m,q∗
n

) = sign
(
nOP · (q∗

n − q∗
m

))∥∥q∗
n − q∗

m

∥∥
2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sign
(
nOP · (q∗

2 − q∗
1

))∥∥q∗
2 − q∗

1

∥∥
2
, m = 1, n = 2

sign
(
nOP · (q∗

4 − q∗
1

))∥∥q∗
4 − q∗

1

∥∥
2
, m = 1, n = 4

sign
(
nOP · (q∗

2 − q∗
3

))∥∥q∗
2 − q∗

3

∥∥
2
, m = 3, n = 2

sign
(
nOP · (q∗

4 − q∗
3

))∥∥q∗
4 − q∗

3

∥∥
2
, m = 3, n = 4

(24b)

where f is the piecewise signed Euclidean distance function, and m ∈ {1,3} and n ∈ {2,4}
are the integer indices of the sub-vector points.

4 Rigid surface mathematical representations and 3-D visualization

The selection of a surface model to represent and visualize the body geometry is of cru-
cial importance for contact analysis. The most important aspects to take under consideration
are the geometric representativity of the surface and the analyticity of the surface functions.
Preferably, the surface model must provide a compact representation (i.e., a small set of geo-
metric parameters) that can uniquely define a surface. Quadric and superquadrics surfaces
are geometric descriptions that are used to model a large variety of 3-D shapes, presenting
great shape fidelity for many natural and manmade objects. In this work, the outer surface or
certain regions of a body’s boundary are modeled as ellipsoidal or superellipsoidal surfaces.

Here, only the implicit surface representation is considered for the contact detection
methodology, whereas parametric surface functions are deduced and used solely for visu-
alization purposes. The surfaces are defined as a polynomial function in x, y, and z Carte-
sian coordinates. For this reason, such functions are called algebraic surfaces. Quadrics are
second-degree polynomials while superquadrics are polynomials with non-negative real ex-
ponents. Some of the surface family members are (super)ellipsoids, and one and two sheet
(super)hyperboloids. Associated with each surface function are geometric parameters that
affect the shape, surface dimensions, and overall curvature in a comprehensible manner.

4.1 Quadric surfaces

The implicit definition of a quadric surface in the canonical form, i.e., the spatial configu-
ration in which the surface is centered at the origin and the main axis are aligned with the
local coordinate system is expressed as a dimensionless real valued scalar function,

FQ(x, y, z) = a11x
2 + a22y

2 + a33z
2 + a1x + a2y + a3z − 1 = 0, (25)

with

a11a1 = a22a2 = a33a3 = 0, (26)

where {a11, a22, a33} are shape coefficients and {a1, a2, a3} are unit or zero valued coeffi-
cients that define the quadric surface family type (as referred in Table 3). Dimension para-
meters along the x, y, and z directions are given by the following formulas:

a = |a11|−1/2, b = |a22|−1/2, c = |a33|−1/2. (27)
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Table 3 Quadric family classification according to the coefficient values

Quadric surface type Coefficients Thumbnail

Ellipsoid a11 > 0, a22 > 0, a33 > 0

Hyperboloid (1 sheet) a11 > 0, a22 > 0, a33 < 0

Hyperboloid (2 sheets) a11 < 0, a22 < 0, a33 > 0

Paraboloid (elliptic) a11 > 0, a22 > 0, a33 = 0, a3 < 0

Paraboloid (hyperbolic) a11 > 0, a22 < 0, a33 = 0, a3 < 0

It should be noted that (25) can also be expressed in a matrix form FQ(x, y, z) =
xT Qx = 0, where

x =
⎡
⎢⎣

x

y

z

1

⎤
⎥⎦ and Q =

⎡
⎢⎢⎢⎣

a11 0 0 1
2 a1

0 a22 0 1
2 a2

0 0 a33
1
2 a3

1
2 a1

1
2 a2

1
2 a3 −1

⎤
⎥⎥⎥⎦ . (28)

Due to the radial symmetry of the surface, a generalized angle-center parameterization
can be deduced by expressing the quadric surface in spherical coordinates and by making
use of the well-known quadratic formula from algebra:

pQ(ϕ, θ;a11, a22, a33, a1, a2, a3) = rQ(ϕ, θ)

[ sθcϕ
sθsϕ
cϕ

]
, (29)

with

rQ(ϕ, θ) =
−r1 +

√
r2

1 + 4r2

2r2
, (30a)

and {
r1 = a1sθcϕ + a2sθsϕ + a3cθ

r2 = a11s2θc2ϕ + a22s2θs2ϕ + a33c
2θ

and

{
ϕ ∈ [ϕo,ϕi]
θ ∈ [θo, θi]. (30b)

where c = cos(.), s = sin(.), rQ is the radial coordinate, φ and θ are the azimuth and zenith
angular coordinates. If rQ = 1 for all the angular domain then (29) defines a unit sphere.
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Note that (30a), (30b) are a parametric equations that are valid for all quadric surface family
members listed in Table 3. This is extremely useful in terms of computational implemen-
tation of the visualization of the contact surfaces since only one expression represents all
surface members.

Given the implicit representation of the surface in the canonical form (25), the normal
vector of a quadric surface is the gradient vector of the scalar function FQ. The normal
vector is therefore given by

nQ = ∇FQ(x, y, z) =
⎡
⎣

2a11x + a1

2a22y + a2

2a33z + a3

⎤
⎦ . (31)

The associated Jacobian matrix contribution is deduced by differential calculus as

(nQ)q = 2

[
a11 0 0
0 a22 0
0 a33

]
, (32)

with q = [xyz]T .
The expressions of (25)–(30b) are simple and computationally inexpensive, promptly to

be assembled within the vector of geometric constraints and associated Jacobian matrix of
the Newton–Raphson scheme (8).

4.2 Superquadric surfaces

Superquadrics are a generalization of quadric surfaces with the exponent replaced by a non-
negative number. Thus, relatively to quadric surfaces, the varying exponent consists of the
introduction of a new degree of freedom for geometric modeling. By varying the exponent
value, rounded, squared, filleted, or pinched shapes can be attained. In the particular case
of superellipsoids, since the proposed contact methodology refers to convex objects, the
surface shape is mediated between circular and rectangular shapes (refer to Table 4).

Barr [2] presented an implicit surface representation of a superquadric, which in the
canonical form, is given by the following expression:

FB(x, y, z) = (
a11x

γ2 + a22y
γ2

) γ1
γ2 + a33z

γ1 − 1 = 0, (33)

where {a11, a22, a33} are shape coefficients, and γ1 and γ2 are the exponents. Depending on
the signal value of shape coefficients, one can define the family type of the superquadric
surface. If γ1 = γ2 with γ1, γ2 ∈ {1,2}, then (33) falls into a quadric implicit function. Barr
[2] introduced a spherical product operator through which a surface is created given two
parametric curves that lay upon two orthogonal planes. In fact, it is merely a generalization
of the spherical to rectangular coordinate transformation. Basically, γ1 and γ2 are the expo-
nents of the orthogonal curves that lay on yOz and xOy, respectively. The formulas for the
dimension parameters along the x, y, and z directions are given by

a = |a11|−1/γ2 , b = |a22|−1/γ2 , c = |a33|−1/γ1 . (34)

The angle-center parameterization is deduced in the same way as for the quadric surfaces.
This being, the parametric superquadric representation pB is given by

pB(ϕ, θ;a11, a22, a33, γ1, γ2) = rB(ϕ, θ)

[ sθcϕ
sθsϕ
cϕ

]
, (35)
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Table 4 Superquadric family classification according to the coefficient values

Superquadric surface type Coefficients Thumbnail

Superellipsoid a11 > 0, a22 > 0, a33 > 0

Superhyperboloid (1 sheet) a11 > 0, a22 > 0, a33 < 0

Superhyperboloid (2 sheets) a11 > 0, a22 < 0, a33 < 0

with

rB(ϕ, θ) = (
sγ1θ

(
a11cγ2ϕ + a22sγ2ϕ

) + a33cγ1θ
)−1/γ1 and

{
ϕ ∈ [ϕo,ϕi]
θ ∈ [θo, θi], (36)

where rB is the radial coordinate, φ and θ are the azimuth and zenith angular coordinates.
Note that (36) is a parametric equation that is valid for all the mentioned superquadric family
members in Table 4.

Barr’s [2] implicit definition of the superquadric surface is composed by a function raised
to γ1/γ2. By twice differentiating (33), the exponent γ1/γ2 − 2 appears in the resulting ex-
pressions. As a consequence, only values of γ1 ≥ 2γ2 are permissible for the proposed con-
tact detection method, so that non-negative exponents are preserved. This deeply hampers
the desired geometric representativity and excludes the particular case of the quadric sur-
faces. For contact analysis with implicit surfaces, the superquadric definition proposed by
Barr is quite limited, although it is entirely applicable when considering the parametric ver-
sion of the geometric constraints. Therefore, an alternative quadric surface generalization is
considered:

FSQ(x, y, z) = a11x
γ1 + a22y

γ2 + a33z
γ3 − 1 = 0, (37)

where {a11, a22, a33} are shape coefficients, and γ1, γ2, and γ3 are real non-negative expo-
nents.

In any computational implementation involving polynomials with rational exponents,
awareness must be given to the numerical evaluation of superquadric equations [27]. The
correct order of evaluation of these exponential terms is (x2)1/ε , with γ = 2/ε, to assure that
the result is not a complex number when x < 0. In order to prevent divisions by zero, the
exponent must be greater or equal to zero. The values of γ1, γ2, and γ3 are bounded between
2 and infinity so that only convex shapes, with no geometric singularities, are modeled.
An angle-center parametric expression for superquadrics with γ1 = γ2 = γ3 is also easily
deducible.

The normal vector to a superquadric surface is also given by the gradient vector and the
Jacobian matrix is obtained in the same fashion:

nSQ = ∇FSQ(x, y, z) =
⎡
⎢⎣

a11γ1x(x2)
1
ε1

−1

a22γ2y(y2)
1
ε2

−1

a33γ3z(z
2)

1
ε3

−1

⎤
⎥⎦ , (38)
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(nSQ)q =
⎡
⎢⎣

a11γ1(γ1 − 1)(x2)
1
ε1

−1 0 0

0 a22γ2(γ2 − 1)(y2)
1
ε2

−1 0

0 0 a33γ3(γ3 − 1)(z2)
1
ε3

−1

⎤
⎥⎦ ,

(39)

with q = [xyz]T .
The problem in generalizing the proposed contact methodology to superquadrics is that

they lead to polynomial equations with fractional exponents, which are difficult to solve nu-
merically. Also, for the case of superellipsoidal surfaces, when two local surface coordinates
are close to zero, the Jacobian matrix in (39) becomes ill-conditioned, which can potentially
jeopardize the non-singularity of the Jacobian matrix of the geometric constraints given
in (12).

5 Proximity queries

In order to increase the efficiency of the contact detection algorithm, proximity queries are
usually considered [16, 18]. They consist of simple tests to ascertain if the surfaces are apart
for a given instant of time.

When dealing with closed surface quadrics, such as spheres and ellipsoids, the most
commonly used proximity query is the bounding sphere test. Such technique allows rapid
tests for proximity contact detection queries, but is not quite precise, and is often evaluated
to determine if a more detailed testing is required. A bounding sphere, as the name suggests,
is a sphere that contains all the points of the ellipsoid and shares the same centroid. Basically,
the test consists in evaluating the inequality between the sum of the semi-major axis of the
ellipsoids and the distance between their centroids. If the distance is lesser or equal to the
sum of the semi-major axis, then a more detailed testing must be conducted. An elegant
and efficient algorithm for detecting contact between two ellipsoids was presented by Choi
et al. [18]. This algorithm is based on the separation condition of two ellipsoids, which
is a necessary and sufficient condition, stating that the characteristic equation has positive
roots if and only if the ellipsoids do not have common interior points [17]. The separation
condition heavily depends on the matrix form of a quadric surface expressed in (28) and is
valid for ellipsoids that are not contained within each other.

Unfortunately, an elegant proximity query, such as the separation condition for ellipsoids
is not to our knowledge available for superellipsoids.

6 Contact detection algorithm

Within the framework of multibody dynamics, the contact detection algorithm takes the
bodies’ positions and orientations, calculated from the equations of motion, and returns
the location of the pair of contact points together with the contact forces. The proposed
algorithm can be summarized in the following steps:

(i) Establish the time interval [t0, tend] for the dynamic analysis;
(ii) At time step t0, establish the initial conditions for the position vector, q0 = q(t0),

velocity vector, q̇0 = q̇(t0), and contact candidate pair of points, qG
0 = qG(t0);

(iii) Evaluate the proximity queries; if the surfaces are sufficiently close then go to (iv),
otherwise go to (vii);
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Fig. 5 Flowchart of the proposed contact detection algorithm.

(iv) Run the Newton–Raphson method with analytical Jacobians to obtain the vector of
the contact points, qG;

(v) Compute the signed distance magnitude, d , and check for contact; if there is contact,
evaluate contact forces according to the constitutive law; if not go to step (vii);

(vi) Add the contact forces to the vector of applied forces, g;
(vii) Solve the equations of motion deduced from the multibody dynamics formulation in

order to obtain the body positions and orientations for the new time step t + t ;
(viii) Update the system time variable t and use the vector qG obtained in (iv) as the initial

guess for the Newton–Raphson method in the next time step;
(ix) Go to step (iii) and proceed with the whole process for the new time step;
(x) Exit the main algorithm’s loop when the final time step is reached.

Note that the contact detection algorithm is run N times for each function evaluation,
where N is the number of rigid contact pairs within the multibody system. Figure 5 shows
the flowchart of the contact methodology. The numerical implementation of this methodol-
ogy leads to an efficient algorithm since the information of the previous time step is used
as an initial guess to find the solution of the non-linear equations and, therefore, only a few
iterations are required to obtain the solution as it will be discussed in the next section.

7 Results

The results presented in this section refer to the distance computation between contact pairs
of ellipsoidal (Table 5) and superellipsoidal (Table 6) surfaces in several configurations and
with different geometric parameters. No proximity queries or multibody dynamics calcula-
tions are undertaken in order to evaluate solely the distance computation efficiency during
the analysis. The contact analysis is performed for a time interval of 200 time steps and,
based on numerical experiments, with a tolerance of 10−6 for the Newton–Raphson accu-
racy, i.e., ‖qG

k ‖2 = ‖qG
k+1 − qG

k ‖2 ≤ 10−6. Prescribed motion is imposed in all cases. The
initial approximation, qG

0 , consisted of the bisection between the surface centroids. For the
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Table 5 Contact pair tests for the calculation of the minimum distance between ellipsoid surfaces in a total of
200 time steps. Caption: Ellipsoid coefficients—{a, b, c}; H—Householder approach; AV—Auxiliary vector
approach

Quadric contact pair 1 2 3 4

Coefficients–surface (i) {3.0,3.0,3.0} {3.0,3.0,3.0} {5.0,5.0,2.0} {1.0,5.0,5.0}
Coefficients–surface (j) {0.5,0.5,0.5} {0.5,0.5,0.5} {5.0,5.0,2.0} {5.0,1.0,5.0}
Prescribed motion – (i) rotates

along the
local x-axis;

– (i) rotates
along the
local x-axis;

– (i) rotates
along the
local x-axis;

– (i) rotates
along the
local x-axis;

– (j) rotates
along the
local x-axis
and orbits
around (i).

– (j) rotates
along the
local [111]T
direction.

– (j) rotates
along the
local [111]T
direction.

– (j) rotates
along the
local [111]T
direction.

Tangent vectors approach H AV H AV H AV H AV

Total computational time (s) 1.18 1.24 1.23 0.921 1.15 1.22 1.20 1.02

Total number of Newton–Raphson
iterations

989 983 853 802 977 1005 956 1007

Newton–Raphson iterations
per time step

∼5 ∼5 ∼4 ∼4 ∼5 ∼5 ∼5 ∼5

Table 6 Contact pair tests for the calculation of the minimum distance between superellipsoid surfaces in
a total of 200 time steps. Caption: Superellipsoid surface coefficients—{a, b, c, γ1, γ2, γ3}; H—Householder
approach

Superquadric contact pair 1 2 3

Coefficients–surface (i) {1.0,1.0,1.0, . . . ,

2.4,2.4,2.4}
{0.4,1.1,1.1, . . . ,

3.2,3.2,3.2}
{4.1,1.1,1.1, . . . ,

2.5,2.5,2.5}
Coefficients–surface (j) {1.5,2.1,1.9, . . . ,

3.0,3.0,3.0}
{1.0,1.0,0.4, . . . ,

3.2,3.2,3.2}
{1.0,1.0,4.0, . . . ,

3.2,3.2,3.2}
Prescribed motion – (i) rotates

along the
local x-axis;

– (i) rotates
along the
local x-axis;

– (i) rotates
along the
local x-axis;

– (j) rotates
along the
local [111]T
direction.

– (j) rotates
along the
local z-axis.

– (j) rotates
along the
local z-axis.

Tangent vectors approach H H H

Total computational time (s) 1.24 1.97 1.39

Total number of
Newton–Raphson iterations

1085 1632 1074

Newton–Raphson iterations
per time step

∼5 ∼8 ∼5

remaining time steps, the Newton–Raphson approximations are the resulting vector from
the previous time step, i.e.,qG

k . The contact detection code was developed in MATLAB®

running on a PC with an Intel® Core 2 Duo processor 1.66 GHz and 2 GB of RAM. The
software code for minimum distance calculation between ellipsoids is available at [28].
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Fig. 6 (Color online) Snapshots of the minimum distance calculation for each contact pair defined in Table 5.
The normal, tangent, and binormal vectors are colored as red, green, and blue, respectively

A high efficiency is obtained for distance calculation of a ellipsoidal surface contact pair,
in which 200 time steps took a total computational time that is lesser than 1.25 seconds, and
an average of 5 Newton–Raphson iterations per time step. Both approaches, the Householder
transformation and the set of non-collinear auxiliary vectors, for determining tangent and
binormal vectors are considered presenting no major differences regarding efficiency. Time
evaluation is comparatively higher when dealing with superellipsoids due, mainly, to the
greater non-linearity of the geometric constraints vector. Although all cases converged to
the desired solution, in Fig. 6-2, it is shown an example of an alternative pair of points that
satisfies (9).

8 Discussion

From a mathematical point of view, ellipsoids detain a better behavior than superellipsoids
since special treatment is not required for continuity singularities and the issues associated
with rational exponents do not take place (divisions by zero and the appearance of complex
numbers for negative domain values). On the other hand, superquadrics possess a higher
geometric representativity since the varying exponents control the overall curvature of the
surface, contrary to quadrics that have a constant power. Both quadric and superquadric
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Fig. 7 (Color online) Snapshots of the minimum distance calculation for each contact pair defined in Table 6.
The normal, tangent, and binormal vectors are colored as red, green, and blue, respectively

surfaces have a small number of geometric parameters and approximate a wide class of
convex objects.

Notice that the contact formulation proposed here is only applied to convex surfaces
placed in a non-conformal contact situation. In fact, if one or both surfaces are concave,
multiple solutions may appear. In order to apply the contact detection methodology to con-
formal situations, a set of superellipsoids can be arranged to fit the non-convex surface.

For ellipsoidal surfaces, it is guaranteed that the Jacobian matrices involved in (12) do not
contain lines of zeros. On the other hand, for superellipsoids, it is necessary to ensure that
the Jacobians of the normal vector and auxiliary vectors are not ill-conditioned so that �G

qG

does not become a singular matrix when a pair of local coordinates is close to zero. In such
case, it is necessary to consider the pseudo-inverse of the geometric constraints Jacobian,
although in some particular cases the Jacobian becomes singular. Another possible Jacobian
singularity appears, for both ellipsoid and superellipsoid cases, when

dPQ = nOP (40)

and

(dPQ)qG = (nOP)qG ⇒ niP = (AOβAβj )
−1(AOβAβj − AOαAαi)[I |0] (41)
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simultaneously occur since a set of rows in (12) becomes linearly dependent.
If the Jacobian matrix, which was calculated analytically, becomes singular, alternative

ways to calculate the Jacobian matrix must be considered, e.g., by finite difference estima-
tion of the Jacobian matrix or preferably by reformulating the vector function �G with other
linear independent collinear or orthogonal constraints (6a), (6b).

Additionally, in some contact pair situations, it should be noted that there may be more
than one possible solution for (9), i.e., the existence of other pairs of points that belong to
the line containing the collinear normals that intersects the closed surfaces on both sides.
Therefore, at each time step, it is necessary to check if the obtained solution matches the
minimum distance: determine the remaining 2 points by radial symmetry and the pair of
points that are not associated with the maximum distance make up the desired solution (22),
(24a), (24b).

Contact calculations contribute quite significantly to the computational cost of multibody
dynamics analysis. The usage of analytical Jacobians, besides guaranteeing the geometric
accuracy of the result, also contributes to the computational efficiency, since no matrix es-
timate is required for each iteration neither does it depends on polygonal geometries nor
complex non-linear optimization methods. A special remark must be drawn to the impor-
tance of the implicit surface representation since the methodology’s success depends greatly
on such a compact and well-behaved mathematical expression. All in all, the computational
efficiency and robustness are the major advantages of the present model as it converges
rapidly, allowing simulations to be performed interactively. Though the computational time
is dependent on the initial guess (a limitation inherited from the Newton–Raphson algo-
rithm), in all cases tested, 200 time steps were completed in less than in 1.25 seconds for
ellipsoids, and 4.10 seconds for superellipsoids.

9 Conclusions

In this work, an accurate, efficient, and easily implementable algorithm for minimum dis-
tance computation between ellipsoidal and superellipsoidal surfaces was presented. The pro-
posed contact methodology relies on the common normal concept and on locus constraints
that are quite intuitive. Consequently, the methodology is easily formulated resorting to vec-
tor calculus and algebraic and differential geometry, providing a uniform framework for
distance computation between objects described as arbitrary convex implicit surfaces (at
least C2 continuous).

As major advantages toward other contact detection algorithms, the proposed contact al-
gorithm does not resort on optimization methods or convex polyhedral geometries, making
use of the potential of analytical expressions for the surface vectors and associated Jacobian
matrices. The usage of analytical Jacobians guarantees geometric accuracy and contributes
to the computational efficiency of the method since no matrix estimation is required for each
iteration. Mathematical artifices were introduced to compute tangent and binormal vectors
for implicit surfaces given the normal vector to a surface. The speed at which distance com-
putation is performed enables real-time simulations for a contact pair.

Despite the Newton–Raphson’s local convergence behavior and that the common normal
conditions possibility on granting multiple solutions in some contact pairs, the methodol-
ogy solves such issues by relying essentially on the radial symmetry and convexity of the
(super)ellipsoidal surfaces. The main pitfall of the methodology is the possibility of the
Jacobian matrices becoming singular in the abovementioned situations.

The proposed contact methodology explores the implicit representation of superquadrics,
which relies on algebraic expressions with rational exponents, contrary to the parametric
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counterpart which involves trigonometric functions raised to rational exponents, i.e., ex-
pressions with higher non-linearity.

Instead of presenting specific parametric expressions for each (super)quadric surface
member the generic (i.e., valid for all quadric members and superellipsoid and superhy-
perboloid members) angle-center formulas of the parameterized surfaces were deduced and
are bestowed for visualization and 3-D modeling purposes.
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